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Abstract

Second-order nonlinear models have been increasingly used in recent years to model
nonlinear processes in offshore engineering. We develop convenient analytic formulae
to predict the nonlinearities in waves and to predict the crest height distribution in
a specified wave condition. We apply such models to study the properties of ran-
dom ocean waves. These include measured waves both in wave tanks and in field.
Statistics comparison between model and measurements include: moment compar-
isons, comparison of distributions of wave elevations, crest heights, wave heights, and
condititional distributions of local wave'parameters, for example, crest height given
wave heights, wave periods given crest heights, among others. _ .

We find the second-order model predictions to agree quite closely with the field
measurements, while the wave tank statistics seem to be underpredicted by the
second-order model.

Finally, we solve the inverse problem, in which we identify the underlying first-
order wave components, which when run through the second-order wave predictor

matches the measured wave histories time point by time point.
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Chapter 1

Prediction of Second-Order Waves

1.1 Introduction

* Nonlinear hydrodynamic effects are of growing interest for ocean structures and ves-
sels. Here we study such effects in one of the most fundamental nonlinearities in
- ocean engineering: the wave elevation 7(t) at a fixed spatial location.
~ It is common practice to model 7(t) using linear wave theory, which results in a
Gaussian model of n(t). This ignores the marked asymmetry in the waves: wave crests
that systematically exceed the neighboring troughs. Such an asymmetry increases
with decreasing water depth. This asymmetry has several practical implications, for
example: (1) asymmetric waves are more likely to strike decks on offshore platforms,
particularly older Gulf-of-Mexico structures designed witfl fairly low decks; and (2)
unusually large dynamic structural responses have been found in high, steep waves
that may not follow linear wave theory.
Second-order random wave models are not new; indeed, they have been a research

topic for more than 30 years (e.g., [1,4,6,7,12,13,19, 21, 22, 27]) and remain so today

1




2 CHAPTER 1. PREDICTION OF SECOND-ORDER WAVES

(e.g., [5,16,25,28]). However, they have not entered common offshore engineering
practice, which applies either random linear (Gaussian) waves, or regular waves that
fail to preserve S;(w), the wave power spectrum. Several drawbacks to second-order
random waves may be suggested: (1) they may be inaccurate, for example due to
their neglect of higher-order effects; and (2) convenient statistical analysis methods
for second-order models are often lacking. We seek to consider both concerns here
— the first through comparison of theory with various wave tank and ocean wave
measurements. The second issue is addressed by fitting new analytical results for
wave moments, and studying the accuracy of using these to construct simple Hermite
models of extreme crests. | _

Note that this study is part of the doctoral studies of the author and this report

has largely been adapted from the author’s thesis [9].

1.2 Wave Model

Second-order Volterra models [18] have come under increasing use for modeling non-
linear random processes in offshore engineering (e.g. [20,26, 30]). n(¢) is accordingly
modeled as the sum of a linear (Gaussian) process 7 (t) plus a second-order correction

7(t) from the nonlinear hydrodynamic problem associated with waves.
1(t) = m(t) + m(t) (L.1)

Before presenting the details of the model, we show the low, mid, and high fre-
quency components of a measured wave tank history in Fig. 1.1 to demonstrate the
presence of potential second-order effects in waves. This history is from wave mea-

surements taken during the Snorre Tension-Leg Platform (TLP) model tests [14].
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The waves have been measured without the structure in the tank. More details of
these wave tank histories are presented in Sec. 1.3. The significant wave height H; is
14.1m and the spectral peak period T, is 13.75 seconds. For this example, we chose
the mid-frequency component around the spectral peak of the measured history, from
0.025 Hz to 0.14 Hz. The upper bound of 0.14 Hz is chosen to be a little smaller than
twice the peak spectral frequency where we expect to see the most dominant second-
order wave contribution. The range below 0.025 Hz represents-the low-frequency
component and the range above 0.14 Hz represents the high-frequency range, in this
example. Fig. 1.1 shows that while the low and high frequency components have
small energies (standard deviations) as compared to the mid-frequency component,
the three components seem to be phase-locked, a phenomenon which would not be
seen in a linear process. This observation supports the modeling of the waves as at

least a second-order process.

For the second-order 7(t) in Eqn. 1.1, the standard Fourier sum for the linear part

™ (t) is

N N E
m(t) =Y Agcos(wxt + 0) = Re ) Ci exp(iwyt) (1.2)

k=1 k=1
in which Re indicates the real part of a complex number, and C; = A; exp(ify) are
“the complex Fourier amplitudes, defined in terms of Rayleigh distributed amplitudes
Ag, and uniformly distributed phases 6;. The Cy’s are mutually independent of one

another. The mean-square value of A is

E[AY) = 2S,(wi)dwy;  dwp = wg —wk-1 (1.3)

Based on Volterra theory [18], second-order corrections are induced at the sums
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Figure 1.1: Low, Mid, and High frequency components of measured wave history
demonstrating presence of phase-locking and potential second-order effects

and differences of all wave frequencies contained in 7 (t):

N N
m(t) =Re 3 3 CmCh [Hitaerntemt 4 H eflom=en)] (1.4)

m=1n=1

In general, the functions H;}, and H, are known as quadratic transfer functions
(QTFs), evaluated at the frequency pair (wm,wn). Sir;lila.r expressions arise in de-
scribing second-order diffraction loads of floating structures [10]; in this case the
QTFs are calculated numerically from nonlinear diffraction an#lysis (e.g., [26]).

In predicting motions of floating structures, in view of the relevant natural periods,
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interest commonly lies with either H}, (springing) or H,,, (slow-drift) but not both.
For example, in the case of the spar floating structure [10], the slow-drift forces and
hence the difference-frequency components generally govern the global motions of the
spar. In contrast, in the nonlinear wave problem both sum and difference frequency
effects play a potentially significant role. Fortunately, unlike QTF values for wave
loads on floating structures, which must be found numerically from diffraction anal-
ysis, closed-form expressions are available for both the sum- and difference-frequency
QTFs for second-order waves (e.g., [12,16]). Including the effect of a finite water

depth d, for example, the sum-frequency QTF can be written as

gkmkn _ 14, ,2 2 g _wmkZtwmks
Ht = Wmwn 29 (wm + W, + wmwﬂ) + 2 Wmwn (Wm+wn)
mn —

1 — g-fmtka tanh(k,, + kp)d

(wm+wn)?
gkmky 1,5, 2
2o + 59 (wh + Wi + Wmwn) »(1.5)

in which the wave numbers k, are related to the frequencies w, by the linear dis-
persion relation w? = gk, tanh(k,d). The corresponding difference-frequency transfer

function, H_,,, is found by replacing w, by —wy and k, by —ki.

Because 7(t) is non-Gaussian, interest-focuses on its skewness a3 and kurtosis 4.
In terms of the significant wave height H, = 40,, and peak spectral period T, these

are predicted by a second-order wave model to be of the form:
303 = (1 + )3 = ma1(Tp) Hy + mas(Tp) H; (1.6)

(s — 3)0 = (m + ) = max(T,) H, + mas(Tp) H (1.7)
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The m;;(T,) are “response moment influence coefficients,” the contribution to re-
sponse moment (cumulant) i due to terms of order O(73). In general these coeffi-
cients afe conveniently calculated from Kac-Siegert analysis (Eqns. 12-15, [24, 30]).
We assume here the spectrum of 7, (¢) is of the form H?T,f(wTp), so that n;(t) scales
in amplitude with H, and in time with T,. Such is the form, for example, of a

JONSWAP spectrum.

It is useful to define the unitless wave steepness S, = H,/L,, in which the charac-

teristic wave length L, = gT?2/2m uses the linear dispersion relation. Note that S, is

far less than unity and a second-order perturbation is performed by retaining terms

only up to Sg. For deep-water waves the coefficients m;;(T},) are proportional to Ly 5,
and they remain nearly so for finite depths as well. Retaining the leading terms in

S, from Eqns. 1.6-1.7:

Q3 = k3Sp ; Q4 — 3= k4a§ (18) .

In particular, for a JONSWAP wave spectrum with peakedness factor -, we have fit

the following k3 and k4 expressions to results for a wide range of depths [28]:

ks = %i = 5.457°% 4 [exp [7.41(d/L,)*®] -1} (1.9)
P

ko= 423 1414709 (1.10)
a3 '

The second term in this result for a3 reflects the effect of a finite water depth d: in
shallower waters the skewness o3 grows, as the waves begin to “feel” the bottom.
When comparing model predictions to data we will investigate the magnitudes of the

omitted (second) terms in Eqns. 1.6, and 1.7.

Note also that while the skewness is predicted to vary linearly with steepness, the
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kurtosis is predicted from Eqn. 1.8 to vary quadratically with the steepness Sp. Since qe
the steepness is far less than unity (squared steepness even smaller), this suggests
that nonlinear effects will be most strongly displayed by the skewness, and hence by
the wave crests rather than the total peak-to-trough wave heights. This second-order |
model may less accurately predict kurtosis, however, as higher-order omitted effects
may be of the same order of magnitude.
In the following sections, we compare predictions frorh the second-order random e
wave model to both wave tank data and ocean wave measurements. The comparisons
are at the following three levels:
|
e Section 1.3: Moments of wave time histories, skewness a3 and kurtosis
a4 or coefficient of excess ay — 3. We will first compare the predicted moments
across a broad range of seastates in both the wave tank and the measured ocean e
data. ‘
e
e Section 1.4: Cumulative Distribution Functions (CDF) of wave ele-
vations, wave crests and wave heights. These comparisons will demonstrate
whether or not the second-order model is able to predict the CDFs, over and e
above predicting the third and fourth moments of the waves.
e Section 1.5: Local Wave Parameters. This study investigates the ability e
of the model to predict local properties of the wave profile; e.g., marginal mean
and standard deviation of a wave crest given a wave height, of wave period given
a wave height and similar marginal moments of other local wave properties. e
e
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1.3 Comparison of a3 and a4: Data vs. Prediction

Models

In this section, we shall compare the predicted and observed skewness and kurtosis
from two different data sets; one from a wave tank and one from the ocean. The wave
tank measurements reflect wave histories with target H; of 4m to 18m in approxi-
mately 308m water depth [14,15]. We consider 18 wave tank histories each about 2
hours long with a sampling frequency of approximately 0.42 seconds. When estimat-
ing moments from the wave tank histories we process hourly portions and as a result
have moments from 36 hourly time histories. The ocean wave histories are laser mea-
surements at Ekofisk in the Southern North Sea in approximately 70m water depth.
These measurements are for durations of about 18 minutes (2048 samples at time
steps of 0.5 seconds) collected every 3 hours during the year 1984. From the annual
data set, we select seastates with H, above 4.5m and with skewness values between
—-0.05 and 0.4 from the Ekofisk data set. The H, and skewness cutoffs are introduced
to seek to filter out any “noisy” measurements. This resulted in selection of 132 time

histories (each of about 18 minutes duration).

Figure 1.2 shows comparisons of predicted skewness and kurtosis with the corre-
sponding sample moments obtained from wave tank histories. Hourly segments of
wave tank histories are processed to obtain estimates of skewness and kurtosis, and
the predicted skewness and kurtosis are based on Eqgns. 1.9 and 1.10. A linear regres-
sion (with zero intercept) of observed skewness vs steepness yields an estimated slope
of 4.97+0.12 (meanzstd. error), close to the predicted slope k3 of 4.93 in Eqn. 1.9 for
v = 3.3. Note that the té.rget « values for most of the wave tank tests were 3.3. The
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effect of the depth-dependent (d= 308m) term in Eqn. 1.9 will cause only a slight in-
crease in the prediction and is neglected here. The seastate-to-seastate scatter oq, in
the observed skewness values is also consistent; the observed o4, is found reasonably
well-predicted by that from the simulated hourly segments of second-order seastates
(using WAVEMAKER [11]). The simulation is based on a fitted JONSWAP spec-
trum for each of the hourly measurements. The simulated skewness values show a
Oas = 0.023, which is smaller than the observed o,; = 0.033 for the hourly segments
of the measurements. The observed seastate-to-seastate kurtosis scatter oq, in the
hourly measurements is 0.11. In Fig. 1.2b, the mean regression slope of 4.9630.33 for
observed k, is about 4 times the predicted k4 regardless of oy. This lends some support
to the view that the second-order model predicts the kurtosis value less accurately

due to omitted higher-order effects [25).

Figure 1.3 similarly compares predicted a3 and o4 values to Ekofisk data. For the
predicted skewness and kurtosis values, we fit the JONSWAP spectrum parameters
to each of observed time histories. H, = 40, where o, is standard deviation of an
observed history. Tl’ and v are found from the measured T, and T;, the mean zero-
crossing period and. the central period, respectively, as shown below. T, and T; are

found from measured spectral moments A\, = [ f*S(f)df as
T, = Ao/)\g ’ T1 = AO/’\I (111)
For a JONSWAP spectrum, we have fit these periods and 7 for a broad range of

[ x T.\2
‘5"\/1",\0)\2"|1'(Tl) (1.12)

A quadratic regression form resulted in the following expressions, for a JONSWAP

bandwidths 4,
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Figure 1.2: Skewness and kurtosis comparison for Snorre model test wave measure-
ments and the second-order model
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spectrum:
= 45842 — 4235 + 96 (1.13)
T, /T, = —0.0023~* + 0.03727 + 0.68 (1.14)
T, /T, = —0.0024~" + 0.0353 + 0.743 (1.15)

Using the fitted v (Eqn. 1.13), H,, T, (from Eqn. 1.14), we predict skewness and

kurtosis using Eqns. 1.9 and 1.10.

For the Ekofisk data set, the slope of the observed trend on as is 4.2430.14,
while the above prediction scheme indicates a larger skewness trend of 4.92. Note
the increase in observed scatter (0o, = 0.06) in skewness compared to the wave tank
data. This is due to the noisy estimate of skewness from the 18-minute samples
compared to the hourly samples in the wave tank case. The observed trend for
kurtosis (ks = 1.03+0.61) is also quite accurately predicted by the second-order
model (predicted k; = 1.37), contrary to what we saw for the wave tank data. Again,
the kurtosis scatter oo, has increased to 0.24 when compared to the hourly estimates

for the wave tank data.

The question is: why should the second-order model better match field data than
the wave tank data when comparing kurtosis estimates? Recall that the wave tank
data represents long-crested waves, while the field data probably represents short-
crested sea conditions. The short-crestedness may likely cause a reduction in the
nonlinearity in the waves at a point, due to the net effect of waves coming from
different directions. In any case, it may seem that the second-order model generally
underpredicts nonlinear effects, as seen in comparisons with the wave tank tests. The
model prediction, on the other hand, seems better for Ekofisk data set; this may,

however, be due to the effect of short-crestedness that leads to reduced nonlinear
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Figure 1.3: Skewness and kurtosis comparison for Ekofisk ocean wave measurements
and the second-order model using fitted H,, T, and 7 values from measurements
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effects in the measurements.

Owing to the underpredicted kurtosis for wave tank data, it may be anticipated
that the second-order model will most likely underpredict the “tails” (extremes) of
the distributions for wave elevations, crest heights, and wave heights. On the other
hand, for the Ekofisk data set where skewness and kurtosis are well predicted we may
hope to find good agreement in predictions and measurements for the wave elevations,

wave crests and wave heights. This is studied in detail in the next section.

1.4 Comparison of Distributions of Wave Eleva-
tion, Crest Height and Wave Height

In this section, we compare the observed _distributions of the wave elevation, crest
heights, and wave heights to second-order simulations (usirig WAVEMAKER [11]).
Comparisons of data to analytical or empirical distributions are also presented. A
summary of the measuréd wave data sets follows. Figure 1.4 gives a schematic picture
of the definitions of the wave parameters. Crest height is defined as the elevation above
mean water level to the highest point between two adjacent mean level upcrossings.
Wave height is the elevation difference from the highest to the lowest point between

two adjacent mean-upcrossings. The other wave parameters will be discussed in

Section 1.5.

1.4.1 Summary of Measured Wave Data Sets

We will compare model predictions to measurements across multiple data sets in
order to study the generality of any conclusions made. We focus here on four wave

data sets: (1) three 2-hour measurements representing the same seastate from the
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Crest
Height

MWL ,
‘ Crest Crest g
i Front Back

Period Period

Wave Period

Figure 1.4: Definition for wave parameters used in the comparison studies

Snorre wave tank tests, (2) one 2-hour measurement again from the Snorre wave tank
tests, but now representing another seastate, (3) fourteen 18-minute Ekofisk wave
measurements representing similar climate conditions. The first data set is chosen
because it reflects 6 hours of wave measurement for a severe sea (see Table 1.3). The
second data set represents a less severe sea with a different steepness S,. Out of the
year-long Ekofisk measurement, we select time histories that have close H,v and T,
values and, generally, reflect a large S, value. We present a summary of the three
data sets in Table 1.1.

Recall that the first two data sets are wave measurements in the wave tank taken
in the absence of any structure. The waves in the wave tank are intended to be long-
crested or unidirectional waves. The third data set is for ocean surface measurementé
taken by a down-looking radar. Since this a field measurement, we may not expect
the waves to be long-crested. The model predictions that follow use only long-ér%ted

waves, because no short-crested information is available. The observed wave statistics
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for these data sets are summarized in Table 1.2. Here, u is the mean, o is the standard

deviation, and “Min.” and “Max.” are the minimum and maximum elevations in the

wave histories for the total durations given in Table 1.1.

Of the three sets, the first data set shows the largest nonlinear effects: largest
skewness, kurtosis and maximum/o values. The last column V2InN is an estimate
of the most probable Gaussian maximum (or —minimum—) value (normalized by
o) in N cycles. We define the cycle count as N = Tyu/T, (see Tables 1.1 and 1.3),
where T, is the mean zero-crossing period. In the first data set, note that the normal-
ized maximum (max./c) is about 22% larger than the Gaussian extreme, while the
normalized minimum value is about 13% smaller than the Gaussian minimum value.
This is a manifestation of the nonlinearity (or skewness effect) that makes the crest
(maximum) larger and troughs (minimum) smaller. Such nonlinear effects are also
seen in the other two data sets, although»to a lesser extent. The Ekofisk set, as noted
earlier, shows the least nonlinear effects. The seastate steepness Sy also provides a
measure of the nonlinearity to be anticipated in the histories, so we will next find the

- H, and T, parameters in order to find S,.

In order to use the analytic formulations of predicted a3 and a4 we fit JONSWAP
spectrum parameters (the significant wave height H,, spectral peak period T}, and
the peakedness factor 7) to the measured spectrum for each of the data sets. In fitting
the JONSWAP spectrum to measurements we choose H, = 40 and we tune T, and
~ s0 as to best fit the measured spectrum around the peak. The measured spectrum
for each data set is found by averaging the spectrum across the different observations
in each data set. For example, for the first data set, we average the spectrum of the
three tests (504, 505 and 506) to find the final spectrum for this data set. For the

second data set, we directly use the measured spectrum, while for the Ekofisk data,
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we average across the 14 measured spectra to find the resulting spectrum used in

fitting a JONSWAP spectrum.

Table 1.3 shows the target (nominal) and observed JONSWAP spectrum param-
eters in the wave tank tests. The observed H, value for Set 1 seems to be different
from the nominal H, values (by about 5%), while observed 7, and + for Set 1 and 2
seem to agree with the nominal values. For the ocean wave measurements, of course,
we do not have any nominal values. A summary of the calculated mean zero-crossing
period T, and the central period T; from the measured spectral moments (Eqn. 1.1 1).

is also shown in Table 1.3.

Table 1.4 gives the seastate steepness (based on the fitted H, and T}, values) along
with the predicted moments from Eqns. 1.9 and 1.10. We see excellent agreement in
the skewness values for the wave tank data sets, however, as also pointed out earlier
on average we underpredict the k_urtosis values. Note also that that skewness is
overpredicted by about 30% for the Ekofisk data set, when using the fitted skewness
form in Eqn. 1.9. This leads to the question of whether accounting for the right
spectral shape rather than usiﬁg the fitted JONSWAP parameters would improve

this prediction at all.

To understand the impact of spectral shape on the predicted a3 and a4 esti-
mates, we use a smoothed spectrum for each data set and predict the moments using
the leading terms in Eqgn. .1.6 and 1.7. The averaged spectrum that was used to
fit equivalent JONSWAP spectra, contains thousands of frequency components and
so a Kac-Seigert analysis that involves an eigenvalue analysis of the frequency com-
ponents becomes prohibitive. We smooth the averaged spectrum across frequency
components, so that the resultant spectrum contains only 256 frequencies. Although

this smoothing might lead to some loss in the frequency resolution, we show that
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the predicted moments will largely be insensitive to this smoothing. The last two
columns (labeled “Smoothed Spectrum”) in Table 1.4 are the predicted moments us-
ing only the leading terms. A difference in these moments and those from the fitted
JONSWAP reflects the impact of spectral shape on the predictions. The kurtosis
estimates seem virtually the same across all three sets. For skewness, Set 1 shows
about 8% reductions, while Set 3 shows about 5% reduction when using the mea-
sured spectrum. When comparing these moments to the measured results, we find
that using a smoothed measured spectrum instead of a fitted JONSWAP spectrum

does not systematically improve the moment predictions in the three cases.

We investigate next the magnitude of the omitted terms in Eqn. 1.6 and 1.7 for
the above moment comparisons for the three data sets. We refer to the second-
order prediction as “consistent” when considering only the leading terms in Eqn. 1.6
and 1.7. The predictions where we included all the terms in Eqn. 1.6 and 1.7, is
what we refer to as “exact” second-order predictions. Such prédictions will describe,
for example, the ensemble moments of simulated wave histories from a second-order
analysis. These second-order simulated histories contain nonlinearities up to second-
order reflected by both the terms in Eqns. 1.6 and 1.7. Table 1.5 compares the

moments from a consistent to an exact second-order analysis for the three sets, using

"the smoothed spectrum in either case. Note that the exact a3 prediction is smaller

than the consistent second-order estimate. This is because the higher-order term in
Eqn. 1.6 gives a negative contribution to skewness [16]. The exact analysis gives
on average a 10% reduction in skewness from a consistent second-order analysis.
The kurtosis values appear to be almost the same in the two analyses,‘ indicating

insignificant contributions from the higher-order terms in Eqn. 1.7.

To compare the CDFs of the wave elevations, crest heights, and wave heights we
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simulate the first- and second-order wave time histories using WAVEMAKER [11].

The details of the resulting simulations are outlined in the following section.
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Table 1.1: Summary information of the four wave data sets used in CDF comparisons

of wave elevations, wave crests, and wave heights

Set | Description Water Sampling Duration
Depth (m) | Frequency (sec) | Tyur (hours)

1 | Snorre wave tank 308 0.424264 5.79
data: Tests 504, 505
and 506

2 | Snorre wave tank 308 0.424264 1.93
data: Test 304

3 | Ekofisk data set 70 0.5 3.98
(Year 1984)

Table 1.2: Observed statistics of the three (zero-mean) measured wave data sets. Note
that these statistics have been estimated from the total durations (see last column of

Table 1.1) of the data sets.

v2InN

Set | o (m) | a3 @ | Min. (m) [ Max. (m) | Min./o | Max./o

1 [ 3.358 | 0.230 | 3.263 | -11.33 15.90 -3.374 4.735 3.881
2 | 1.762 | 0.154 | 3.141 | -6.047 7.944 -3.432 | 4.509 3.633
3 | 1.285|0.113]3.012| -5.280 5.490 -4.109 | 4.272 3.883

Table 1.3: Spectral parameters for the four wave data sets

Nominal Spectrum | Fitted JONSWAP Calculated
TEACIFCIEREAGIEI0IER FACI N0
1 14.1 13.75 | 3.3 134 13.75 | 3.3 | 11.16 12.
2 7.0 12.0 | 3.3| 7.048 | 12.0 |3.3| 9.45 | 10.05
3 * * * 5.14 98 |33 762 | 8.21
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Table 1.4: Predicted moments from fitted JONSWAP spectral parameters and from
measured spectrum that has been smoothed

Steepness | Observed | Fitted JONSWAP | Smoothed Spectrum
Set Sy a3 a4 as oy a3 Qa4
1 0.0454 | 0.230 | 3.263 | 0.224 3.07 0.207 3.06
2 0.0314 | 0.154 | 3.141 | 0.155 3.03 0.153 3.03
3 0.0343 | 0.113 | 3.012 | 0.170 3.04 0.162 3.04

Table 1.5: Skewness and kurtosis predictions from a consistent second-order analysis
vs. exact second-order analysis

Steepness | Consistent 2nd Ord. | Exact 2nd Ord.
Set Sp Q3 Q4 a3 Q4
1 0.0454 | 0.207 3.06 0.181 3.07
2 0.0314 | 0.153 3.03 0.141 3.04
3 0.0343 | 0.162 3.04 0.143 3.04
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Table 1.6: Number of simulations and durations (in hours) of each for the four data
sets

No. of Duration of | Total duration
Set | Simulations | 1 simulation (hours)
1 20 1.93 38.6
2 10 1.93 19.3
3 50 0.28 14.2

1.4.2 Summary of Simulated Wave Data

The simulations of the first- and second-order histories for the four data sets are
based on the measured. spectrum of each. The time resolution and the duration of
each simulated history are chosen to be the same as those for a single measured history.
For example, for the first data set, each simulated history has a duration of 1.93 hours
with a time resolution dt=0.424264 seconds; similarly, for Set 3 each simulated history
contains 2048 points with dt=0.5 seconds. A summary of the number of simulations
(Nsim) and total durations (Nsim x duration of 1 history) of the simulated histories
is given in Table 1.6. The number of simulations lis generally chosen so that the total
simulated durations are longer than the total observed ones. The longer simulations .
are more likely to “fill in” the tails of the distributions and thereby offer a more robust
comparison in the tails.

In order to compare predicted moments to observed results from similar durations,
we combiﬁe' the simulated histories to replicate the total durations in the observed
results. For example, in Set 1 we combine (concatenate) 3 histories into 1 and as
- result have 6 simulated histories each of duration 5.79 hours. Similarly, for Set 3
we combine 14 histories into 1 and as a result have 3 histories each of duration 3.98

hours. For Set 2, we do not need any concatenation since the observed history is itself
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1.93 hours long. Of particular interest here, is the scatter in the maximum elevation
of simulated histories of different durations.

Table 1.7 summarizes the means and standard deviations of the simulated time
histories. These means and standard deviations have been found fér moments from
the combined histories in each data set. For example, for Set 1 we estimate the
moments for the 6 simulated histories each of duration 5.79 hours and then estimate
the mean and standard deviations from these 6 values for each moment. Similarly,
for Set 3 we find the mean and standard deviations of the moment from 3 simulated

histories each of duration 3.98 hours. As Table 1.7 reports, the second-order o’s are

very close to the observed o’s in Table 1.2 indicating that the second-order corrections

contribute insignificantly to the standard deviation of the process.

As noted earlier, the simulated o3 and o4 values agree with the predicted moments
from an exact second-order analysis in Table 1.5. The largest difference in case of Set 2
is about 9% and this is within the simulated scatter (0.1289+0.0226). These simulated
moments, when compared to the observed moments in Table 1.2, appear to be close.
The largest discrepancy in o3 and a; is seen in Set 1. We will investigate the impact
of these differences between predicted and observed moments on the distributions of

elevations, crests, and wave heights in the next section.

1.4.3 Comparison of Wave Elevation Distributions

We first study the comparisons of normalized wave elevation for data set 1, shown in
Figure 1.5. The probability density function (PDF) of observed data is shown with
+1 o bands on it. This scatter or sigma band of the probability density is estimated

as [17):
p(l—p)

1
scatter,o = By (1.16)
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Table 1.7: Means and standard deviations of moments of simulated second-order
histories for the four data sets. The standard deviation of the moments reflects the
predicted scatter in the durations specified.

Set | Duration o (m) o3 as | Min. (m) [ Max. (m)
1 5.79 Mean | 3.3830 | 0.1815 | 3.0393 | -12.7550 | 15.0283
Sigma | 0.0411 | 0.0140 | 0.0760 | 0.8195 1.1667
2 1.93 Mean | 1.7612 | 0.1289 | 2.9855 | -6.0894 7.1302
Sigma | 0.0874 | 0.0226 | 0.1093 | 0.8442 0.9656
3 3.98 Mean | 1.3060 | 0.1397 | 3.0923 | -4.9153 6.4073
Sigma | 0.0285 | 0.0132 | 0.1412 | 0.1843 0.5593

where dn is the bin-width used, N is the total number of samples in the observation,
and p is the estimated probability of being the bin. Note that 1/dn is included to
reflect a probability density scatter. The PDF of the second-order simulation agrees
with observed results at almost all probability levels. Note the slight underprediction
of elevations around %3¢ levels. Such a comparison of the PDF plots offers indepen-
dent comparisons across different elevation levels. The distinctly positively skewed
nature of the observed PDF compared to standard Normal PDF ¢(u) in Fig 1.6 shows
the non-Gaussianity of the observed elevations. This figure also compares analytical
models for elevation distribution to data. Although, the Charlier series (see, e.g., [13])
using predicted moments from fitted JONSWAP spectrum (see Table 1.4) seems to
agree here with the observed PDF over the range plotted, the demerits of this series
approximation include (e.g., [27]): (1) for extreme elevations the PDF may become
negative, and (2) it may show multimodal characteristics not inherent in observations.
For example, in Fig. 1.6, the Charlier series shown on log scale could not be plotted
below about —3.50, because the Charlier PDF is negative below this elevation value.

The Hermite model [29] is a cubic transformation of standard Gaussian process

based on the first four predicted moments. We present a simplified form of the Hermite
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model applicable over a wide probability range for waves. This simplification results
because the predicted kurtosis levels for the waves do not significantly affect the
transformations, as a result we only need up to the quadratic term in the Hermite
transform. At a given fractile, the standard normal variable u can be transformed to

a non-Gaussian wave elevation level z in the simplified Hermite model as

T = g(u) = 'ﬁ‘+ Koy |u+ %i(u2 - 1)] ; k=1/4/1 -+;a§/18 (1.17)

in which 7 is the mean wave elevation. We will compare the predictions of this

simplified model to the full cubic-transformation result, which is given as:

z = g(u) =7+ Koy [u+63(u2 — 1)+ cq(u® - 2u)] ; k=1/y1 +2c3 +6c3 (1.18)

Optimal values of ¢; and ¢4 are found in order to minimize lack-of-fit errors in a3 and
a4 [29]. Fig. 1.7 compares the Hermite predictions to data, where the three Hermite

predictions include:

e simplified model (Eqn. 1.17) with predicted moments (labeled “Sim.Herm. w/
Pred.Mom.”). Note that this prediction is labeled “Hermite” in Fig. 1.6.

e cubic Hermite (Eqn. 1.18) with predicted moments (labeled “Cub.Herm. w/
Pred.Mom.”) .

e cubic Hermite (Eqn. 1.18) with observed moments (labeled “Cub.Herm. w/
Pred.Mom.”)

This figure reports virtually no difference in the simple and cubic Hermite predictions
using the predicted moments supporting the use of the simple Hermite when using

prediction moments from the second-order model. The cubic Hermite model using
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observed moments (from Table 1.2) improves the prediction, especially around —3.50.
Larger extremes have been shown in this figure, to emphasize the elevation difference
likely to be seen when using observed or predicted moments in the Hermite predic-
tions. The cubic Hermite model with observed moments appears to best match data;

however, this model uses observed moments and requires that data be available to find |
the observed moments. A simplification would be to empirically relate these observed
moments to the seastate parameters and use these'in the cubic Hermite model. We
propose that the simple Hermite model with predicted moments from second-order

theory offers a convenient alternative to predict a broad range of wave elevations.

Before we look at comparisons of the crest heights (the peaks of the elevation
process), we will look again at the wave elevations on a different scale — the CDF
or rather the exceedance probability 1—CDF. As seen in Fig. 1.8a, the exceedance
probability permits comparisons of the cumulative effects of the process. The second-
order simulation appears to agree, within the observed scatter, with the observed
CDF out to 20,. We note a slight underprediction of the observed wave elevation, for
example, of about 0.150;, at 0.001 exceedance probability. This slight underprediction
may have been anticipated in view of the underprediction of the observed kurtosis
by the model. A Gaussian model underpredicts the observed wave elevations (see
Fig. 1.8b), for example, by about 20% at 0.0001 exceedance probability and the
(simplified) Hermite model (Eqn. 1.17) improves the agreement and offers a similar
comparison as the second-order simulated result. There appears to be a discrepancy
of about 7% (well within the observed scatter shown by error-bars) at the same 0.0001
fractile. - As noted earlier, using the observed instead of the predicted morhexits in the

cubic Hermite transformation improves the agreement even in the large extremes.
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Both the Hermite models: cubic and simple, however, seem to be within the error-
bars of the observed CDF and are considered equally good predictors. Note that in
the all the figures to follow, the predictions from the simplified Hermite model using
the predicted skewness (from Eqn. 1.9) are labeled as “Hermite”. A comparison of the
second-order simulated crests and the simple Hermite predictibns shows that these
two seem to agree with each other quite closely at all shown fractiles. |

For the second data set, we similarly find the second-order wave elevations to gen-
erally agree with the observed results (see Fig. 1.9). The underprediction of observed
elevations in the tails seems to be within the observed scatter in the elevations. The
Gaussian model systematically underpredicts the elevations (a discrepancy of about
20% at 0.0001 fractile), while the Hermite model improves the agreement (i.e., the
discrepancy is now within observed scatter).

Finally, for the third (Ekofisk) data set, the second-order simulation and the Her-
mite model appear to yield excellent agreement with observed wave elevations (see
Fig.ll.IO). The Gaussian underprediction also seems to be less severe as compared
to the previous two data sets. Recall that this a field measurement where short-
crestedness may cause a reduction in the nonlinear wave effects, so the second-order
model, which underpredicts the long-crested waves, seems to better agree with the
field data. Further investigations, however, have not been done to verify this hypoth-
esis.

Based on the wave elevation comparisons, we may anticipate the second-order
model to best predict the Ekofisk crests, and possibly to slightly underpredict the

wave tank crests. We will investigate this in the next section.
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Figure 1.5: Normalized wave elevation PDF: Data vs. second-order simulations for
Set 1 (Snorre wave tank data: Tests 504, 505, 505)
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Figure 1.8: Normalized wave elevation CDF: Data vs. second-order simulations and
analytical models for Set 1 (Snorre wave tank data: Tests 504, 505, 505)
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Figure 1.9: Normalized wave elevation CDF: Data vs. second-order simulations and
analytical models for Set 2 (Snorre data set: Test 304)
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Figuré 1.10: Normalized wave elevation CDF: Data vs. second-order simulations and
analytical models for Set 3 (Ekofisk data set)
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1.4.4 Comparison of Crest Height Distributions

The crest height comparison shown in Fig 1.11a for Set 1, shows that while the second-
order model accurately predicts the small crests, it appears to underpredict the large
observed crests. For example, at 0.001 fractile we find the model underpredicts crests
by about 10%. The underprediction in crests heights seems more severe than the wave
elevation prediction (see Fig. 1.8). An hypothesis is that the underprediction may
be due to higher-order effects. This seems supported at least in the wave elevation

case, where the agreement improves when including the observed moments in a cubic

Hermite transformation.

Fig 1.11b, which compares the analytical models to data, shows that the Rayleigh
crest model given as Prob[Crest > c] = éxp(—O.S(c/a,,)z) from linear (Gaussian) wave
theory, underpredicts the crests at almost all probability levels of interest (discrepancy
of about 25% at the 0.001 fractile). The depth-dependent Haring et al [3] crest
height distribution empirically fitted to observed ocean crest data, offers only a slight
improvement (discrepancy of about 20% at the 0.001 fractile) over the Rayleigh model.
‘The Haring distribution has been calibrated for a range of water depths less than 200
meters. A similar form was also proposed by Jahns and Wheeler [8]; in this case the
wave data comprised of shallow water storm wave records obtained in the Gulf of

Mexico. The Haring et al exceedance distribution function is given as
Prob|Crest > ¢] = exp[—0.5(c/oy)?]{1 — 4.37(c/d)(0.57 — ¢/d)} (1.19)

Finally, the Hermite model (a transformation of the Rayleigh crests using Eqn. 1.17)
offers a closer fit to observed crests than the Haring distribution. The discrépancy

(underprediction) now is about 13% at the same 0.001 fractile level. Note also that
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the Hermite prediction agrees well with the second-order simulated crests (compare

results across Figs. 1.11a and b.

Fig. 1.12 shows similar results as in Fig. 1.7 where we had investigated the impact
of kurtosis on the predicted elevations. We first look at the impact of omitting the
predicted kurtosis in the crest prediction. Using analytic predicted skewness and kur-
tosis (see Table 1.4 for actual values) in the cubic Hermite instead of just skewness in
the simple Hermite prediction hardly changes the predicted levels; “Cub.Herm. w/
Pred.Mom.” vs. “Sim.Herm. w/ Pred.Mom” are virtually the same in Fig. 1.12.
Using the observed moments (see Table 1.2) in the cubic Hermite improves the agree-
ment with observed crests; however, we still see some underprediction in the crest
levels around 2 to 3 o,. This indicates that even including the correct kurtosis in
the cubic Hermite prediction model may not yield perfect crest predictions, implying
that other contributing effects may not be predicted exactly. An hypothesis is that,
while the Hermite model (using observed moments) predicts the elevations quite ac-
curately, it may still not be modeling the slopes or the velocities of the wave surface
and thereby is unable to correctly predict the crests heights. Another hypothesis is
that these long-duration wave measurements may be nonstationary. A way of inves-
tigating this (not done in this study) may be to divide the measurements into smaller
segments and then compare model predictions with observed results from these small

segments, where presumably the wave conditions could be assumed to be stationary.

The second data set, again, shows (see Fig. 1.13) similar crest comparisons as in
the first set. The second-order simulation offers good agreement for the small crests
and underpredicts the large crests (discrepancy of about 12% at 0.01 f_ractile).. Of the
analytical models, the Rayleigh distribution underpredicts the observed crests more

severely (discrepancy of about 17% at 0.01 fractile). The Haring et al distribution
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offers only a slight improvement over the Rayleigh crests, while the Hermite model
offers slightly better agreement to observed results (discrepancy of 7% at 0.01 fractile).
As anticipated for the Ekofisk data set, the second-order model agrees well with the
observed crests (see Fig. 1.14). While the Rayleigh model underpredicts the crests,
now both the Hermite and the Haring et al. models seem to agree with the observed

crests at all probability levels.

In summary, given that the wave tank data and the field measurements are ac-
curate, we may conclude that while skewness is well-predicted in both types of mea-
surements, the wave tank kurtosis is large than that predicted from a second-order
model and the field wave kurtosis can be well-predicted by the second-order model.
On the other hand, a hypothesis could be that the wave tank data is in “error” due
to its limited ability to generate intended waves. This may be due to scaling issues in
the wave tank tests or due to nonstationarity effects in the long measurements. One
could on the other hand argue that the field tests may be in error due to measurement
noise from the water spray or a direct comparison of field data to the model predic-
tions may be inconsistent due to the presence of short-crested effects in the field data
which we are not able to include in the second-order model predictions for lack of
information on the directional spread. Recall a third source of error in the field data
may be the pooling of the 18-minute histories across different measurements during
the year. Further studies along these lines may help explain the differences in the

measured results and the model predictions.

We will next look at the model and observed wave heights; we expect any discrep-
ancies to be less severe than seen for the crest comparisons. This expectation is due
to the wave elevation being skewness rather than kurtosis-driven; because skewness

effects both crests and troughs in compensating ways the wave heights tend, therefore,
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to show less nonlinear affects than the wave crests alone.



1.4. DISTRIBUTION COMPARISONS 37
1 1 i
Data
Data + 16 —+—i
2nd Order —-=-—-—

01‘ 2nd Order + 16 —6—1

w
(&)
<-I> 0.01
0.001
0.0001 . 1 | i ‘s
0 1 2 3 5
Crest Height / oy,
(a) Data vs. Second-order simulation
1 o
' ' Data:
Data + 16 —+—
Rayleigh -=----
N Haring et al -
01 Hermite —-—-—-- _
w .
(=] '
CIJ 0.01 .
0.001
\\\ \\
0.0001 ‘ 1 1 g N\ * "
0 2 3 5
Crest Height / o,

(b) Data vs. Analytical models

Figure 1.11: Normalized crest height CDF: Data vs. second-order simulations and
analytical models for Set 1 (Snorre wave tank data: Tests 504, 505, 505)
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Figure 1.13: Normalized wave crest CDF: Data vs. second-order simulations and
analytical models for Set 2 (Snorre data set: Test 304)
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Figure 1.14: Normalized wave crest CDF: Data vs. second-order simulations and
analytical models for Set 3 (Ekofisk data set) '
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1.4.5 Comparison of Wave Height Distributions

Figure 1.15 compares model and observed wave heights for the first data set. The
second-order model offers a closer agreement (within observed scatter) to observed
wave heights than the corresponding cresf height comparison. For example, at the
same 0.001 exceedance probability, the second-order model now underpredicts the
observed wave height only by about 6%. Recall the crest height underprediction
at this fractile was 10%. Of the analytical models, the Rayleigh model, typically
used for wave heights, is given as Prob[Height > h] = exp[—(h/oy)?/8), while the
Forristall distribution [2], an empirical fit to observed ocean wave heights, is given
as Prob[Height > h] = exp[—(h/oy)*126/8.42]. The Rayleigh model seems to best fit
the observed wave heights, while the Forristall distribution underpredicts the wave
heights for this wave tank data. The simplified Hermite wave height prediction, which
can now be a transformation of the Rayleigh crests and troughs to make heights, is not
shown on the plot. The Hermite model finds the heights by transforming a Rayleigh
crest and a Rayleigh trough at a desired fractile using Eqn. 1.17. The transformed
crest and trough are added to result in the predicted height at this fractile. Note that
in the simplified Hermite transformation the skewness shifts the crest and the trough
in the same way so that the wave height remains identical to the Rayleigh height (=
‘Rayleigh crest plus Rayleigh trough). A cubic Hermite transformation that includes
the kurtosis effect increases the crest heights and the trough depths depending on the
kurtosis magnitude. For kurtosis larger 3, this may only lead to larger wave heights
than the Rayleigh distribution. Since the predicted kurtosis values are small, using
these in the Hermite model may not significantly affect the wave height results. We

choose, therefore, to not show the Hermite wave height model in the comparisons.

A comparison of the wave heights (Fig 1.16) for the second data set offers similar
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conclusions as the first data set. The second-order simulation offers good agreement
for the small heights and slightly underpredicts the large heights. Of the analytical
models, the Rayleigh distribution agrees well with observed wave heights. Finally,
the second-order model and observed wave heights agree well for the Ekofisk data set
(see Fig. 1.17). Now, however, the Rayleigh model slightly overpredicts the observed
heights, and the Forristall distribution agrees well with the Ekofisk heights.
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Figure 1.15: Normalized wave height CDF:‘ Data vs. Second-order simulations and
analytical models for Set 1 (Snorre wave tank data: Tests 504, 505, 505)




44 CHAPTER 1. PREDICTION OF SECOND-ORDER WAVES

l l Da{a :
- Data + o +—+—
1 2nd Order -:—-=-~
2nd Order + 10 —e—
01 F
w i
[
© o001
0.001 3 X
0.0001 1 1 1 1 1 1 { L
0 3 4 5 6 7 8 9
Wave Height /°n
(a) Data vs. Second-order simulation
1€
E I I ' l Da{a
: Data + 16 F—+—
[ Féayl‘eigrlml ------
01F orristall weeeememees
w [
0
(lJ 001 F
I
0.001 \
3 \\
\\
\ \‘
0.0001 1 | 1 { 1 1 I Y
o 7 8 9

3 4 5 6
Wave Height/ o,

(b) Data vs. Analytical models

Figure 1.16: Normalized wave height CDF: Data vs. Second-order simulations and
analytical models for Set 2 (Snorre data set: Test 304)
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Figure 1.17: Normalized wave height CDF: Data vs. Second-order simulations and
analytical models for Set 3 (Ekofisk data set) :
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1.5 Comparison of Local Wave Statistics

In this section we compare conditional distributions of local wave parameters. Fig-
ure 1.18 defines the local wave parameters to be studied in this section. Crest front
period T¢r is the period from a mean-upcrossing to the time of occurrence of the
highest point in a crest. Crest back period Tcp is similarly defined as the period be-
tween the highest point in a crest to the following mean-downcrossing. Crest period
Tc is the sum of Tor and Tep and is the period between a mean-upcrossing and the
following mean-downcrossing in the wave. The wave period T, finally, is the period
between the two mean-upcrossings in a wave.

We will compare the conditional distribution of the local wave parameters from
the second-order model to data. We will demonstrate these comparisons with the
first wave data set that represents the Snorre wave tank measurements. We will first
look at the conditional distribution of a wave’s crest height given its wave height.
Figure 1.19 shows the conditional mean and standard deviation of the wave crest
given a wave height for the first- and second-order simulated histories and measured
data. The Gaussian (first-order) simulation, of course, shows that the crest heights

are on average half the corresponding wave heights. The data shows systematically

~ larger crests conditionally, given the corresponding wave height. The second-order

model is found to predict this conditional vertical asymmetry quite accurately. Note
that even though the_ model slightly underpredicts the marginal distributions of the
crests and of the wave heights, the conditional crest mean and standard deviation
seem accurately predicted.

We next consider the horizontal asymmetry in the waves. Figures 1.20 and 1.21
compare T¢ to T, and pr to T, respectively. As may be expected, the first-order

and second-order simulations do not indicate presence of any horizontal asymmetry.
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As seen in the figures, T is approximately half of Ty . Similarly, Tcr is approximately
half of Te. No horizontal asymmetry can be found in the observed data either,
indicating that the first- and second-order simulations are statistically equivalent to
the observations as regards horizontal asymmetry.

Figure 1.22 shows the conditional distributions of wave periods given crest heights
for data, first- and second-order simulations. This figure shows the conditional median
along with 16- and 84-percentile spread of wave periods given crest heights. All results
show the sarﬁe trend of increasing wave periods for small to moderate crest heights,
and constant wave periods for large crest heights. The asymptotic wave period is close
to the central period obtained from the first moment of the wave spectrum (in this
case the central period is about 12 sgconds, Table 1.3). Figure 1.23 shows a similar
comparison of conditional distribution of maximum of Tcr and Top in a wave vs.
the crest height of the wave. This is again shown as the conditional median with 16-
and 84-percentile scatter of Max.(T¢r, Tes) given crest heights. Such statistics are

of interest, for example, in identifying the large high-frequency resonant (“ringing”)

responses that may be observed in offshore structures. Again, all results show the

same trend of increasing periods for small crests and a gradual asymptote period for
large crest heights, with the second-order model offering a slightly better agreement
to data. The asymptotic maximum of the crest front and back period for large crest

heights is about 25% of the central wave period.




48 CHAPTER 1. PREDICTION OF SECOND-ORDER WAVES

Crest ‘i‘ Crest ;
Front Back
Period Period

Wave Period
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Chapter 2

Identification of First-Order Waves

In ocean engineering practice it is common to assume the waves to be Gaussian
when estimating forces on large volume structures and any nonlinearity in the waves
is embedded in the structural response analysis (e.g., [26]). It has been shown in
this chapter that observed time histories generally contain nonlinearities, it is thus
irﬁperative to remove any second-order effects in the incident waves so that these
effects are not double-counted in the resulting response estimation. Recent studies
([23]) have demonstrated the impact of double-counting such second-order effects on
various structural response characteristics. We demonstrate this issue further in the

study on the spar floating platform [10].

The methodology to idéntify the underlying first-order waves is to seek the implied
first-order wave history which, when run through the second-order wave predictor,
yields an incident wave that agrees with the target observed history at each time
point. This identification is performed using a Newton-Raphson scheme to achieve
simultaneous convergence at each complex Fourier component. If the observed his-

tory has N components, we iteratively solve N simultaneous nonlinear equations to

51
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identify the first-order components. The next section details the methodology of this

identification scheme.

2.1 Methodology

The idea here is to identify the implied first-order history () (of an observed history
Tobs (t)) which, when Tun through the second-order predictor, yields an incident wave
that agrees with 7ops(t). The reader is referred to [11] for details on the algorithm.

In the first-order wave process m(t), see Eqn. 1.2, written as a Fourier sum of N
frequencies,

N/2 N )
m(t) = Axcos(wt + 6x) = Y Xpe™** (2.1)
k=1 . k=1

we need to identify only the lower half X, components, since the upper half values
are complex conjugates of the lower half. Let us denote X} = Uy + Vi, where Uy, Vi
are the real and imaginary parts of the complex Fourier component X}, respectively.
The predicted second-order wave process (see Eqn. 1.4) as evaluated from the
QTFs is
N/2 N/2 - .
Amp(t) =2Re S 3 X XpHif ellmtonlt 4 X, XrH eilom—en)t (2.9)
m=1n=1
This may be rewritten in the form of a Fourier sum as

N
Am(t) = 3 Yee (2:3)
k=1

~ where Y = Y;* + Y, are the combined sum and difference frequency components.

Here again, Y possesses conjugate symmetry so that only the lower half contains
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unique information. Y;" can be shown to be

it = > XaX.H,
m+n,k
m+n,k

where the summation symbol indicates a double summation

N/2 N/2 _
Z - Z Z such that w,, + w, = wi (2.5)

m+n,k m=ln=1

and
Yo = Y XaXpH.,
m-n.k
m—nk .
where
N/2 N/2 ,
S =33 such that |wy — wn| = wi 2.7)

m—n,k m=1n=1

The combined predicted wave process is
Tpred () = M1(t) + Anpa(2) (2.8)

The identification scheme strives to simultaneously match 7,red(t) to the observed
wave history 7.ps(t) at every value of t. Alternatively, we can perform the identi-
fication in the frequency domain and strive to simultaneously match the predicted

Fourier components to the observed Fourier components at all frequencies.
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Nobs(t) can be represented in the frequency domain as

N
Tovs(t) = D Zpe ! (2.9)
k=1

where Z,’s also possess conjugate symmetry. If the first-order components are iden-

tified exactly, from Eqn.s 2.1, 2.3 and 2.9 we will have
Zr=Xr+Y ; forallk=1...N/2 (2.10)

Note that the upper half values can be obtained from conjugate symmetry of the
lower half values. In the Newton-Raphson identification scheme we will try to simul-

taneously minimize Xy +Y; — Zi; for k = 1... N/2 to achieve convergence. Now, this

~ scheme requires a Jacobian of Xy + Y — Z; with respect to the unknowns Xi—such a

complex differentiation will lead to numerical discontinuities so we will minimize an

equivalent real function \/E{’ 2/N instead, where for k =1...N/2

f = Re(Xi+Yi—Z)

Jfranp = Im(Xy + Yy — Zg) (2.11)

The identification of the lower half X} values requires a simultaneous solution of
the nonlinear equations in 2.11 such that fy = O forall k =1..... N, or alternately
\/Ef' f2/N — 0. We will formulate the Newton-Raphson scheme in vector form as

PR e

ImX ImY ImZ

where bold face letters denote vectors, and vectors X,Y,Z contain the complex
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Fourier components X, Y, Zk, k = 1...N/2, respectively. Here, [ ﬁg ] is a vector

containing the real part of X in the upper half and the imaginary part of X in the

lower half.

Let us denote

[ ReX U

A = _ImX]_[V]
[ ReY

B = _ImY] (2.13)
[ ReZ

C = _ImZ]

Note that the vector A, of length N, is constructed such that lower half values
are the real parts of Xk;‘ k = 1...N/2 and the upper half is the imaginary part
of X;; k = 1...N/2. Similarly, B and C, each of length N, contain real and
imaginary parts of the lower half of the second-order correction and the observed
Fourier components, respectively. The elements of A and B are denoted by a; and
by, respectively, where [,k = 1...N. The objective function in vector notation now
is

f(A)=A+B-C (2.14)

A first-order Taylor approximation of f(A) about a given AO is
£(A)=f(A®)+[J](A-A) (2.15)

where [J] is a Nx N Jacobian matrix denoting the derivatives of the elements fj in

vector f(A) with respect to each of the unknowns g; in A where k,l=1...N. The
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Newton-Raphson scheme at iteration p + 1 is then formulated as
APtD = AP 4 h ~(2.16)

where h, a vector of length N, is found from a Cholesky decomposition followed by

a back-substitution scheme from

[JIh=—f (A®) (2.17)
It can be easily shown from Eqn. 2.14 that the entries Ji; of the matrix [J] are

Jeg=7— =0+ (2.18)
a ay

. where 0b;/8a; indicates the partial derivative of by with respect to a;, and

1 ifk=1
o = ' (2.19)

0 otherwise

To find by /day, recall from notation in 2.13

be =ReY:y and beywp=ImY; for k=1...N/2

q=ImX;=U;, and aunp=ImX;=V for [=1.. .N/2
so that from Eqn.s 2.4 and 2.6 we have

ReY
OReTh = Z (Un‘sml + Um‘snl) H:m + Z (Un6m1 + U,,.J,,;) H';
aU’l m+n,k m-—n,k
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OReY;
ae : = Z - (Vndml + Vm(snl) Hr-lr;n + Z (Vn‘sml + Vm‘sﬂl) H;m (2‘20)
Vi m+n,k m—n,k
O0lmY;
6nl;' Lo Z (Vm6n1 + ‘/n(sml) H;-m + Z (Vm(s"l - V"(sml) H"—;"
/4 m+n,k m—nk
0ImY;
Mk = E (Untsm( -+ Umanl) H;n + Z (Unéml - Uménl) H;m
BVI m+n,k m—n,k
Schematically,

(2.21)

where [I] is the identity matrix.

2.2 Verification

2.2.1 Identification of components for simulated data -

The simulétion of second-order waves and the identification of the first-order waves
have been implemented in the WAVEMAKER software [11]. We simulated a second-
order wave history whose first-order component is characterized by a JONSWAP
spectrum with H, =12 m, T, = 14s and 7y = 3.3 in 70 m Water depth. We used the
net second-order simulated history and tried to identify its first-order wave component
using the above-mentioned methodology. A successful idenfication is implied if the
identified first-order component matches the input first-order time history time point
by time point.

Figure 2.1 shows the wave spectrum of the simulated history and the identified
first-order spectrum along with the corresponding second-order wave spectrum. We

see that small second-order contribution to the power spectrum, roughly a decade
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below the first-order spectrum even at frequencies twice the peak spectral frequency,
suggests the difficulty in identifying these components. Figure 2.2 shows the net sim-
ulated wave history and the identified first-order wave history in cycles around the
maximum crest height. We next compare the identified first-order wave history to
the input first-order history for simulation in Fig 2.3. The identified first-order com-
ponent is almost the same as the underlying (input) first-order component indicating

a successful identification of the components of a wave history.

2.2.2 Idenfication of components for wave tank data

As another example we will identify the underlying first-order wave component for
the Snorre wave tank history (Test 504) that reflects a water depth of about 308m.
Figure 2.4 shows a portion where the maximum crest height occurs in the measured
wave tank history. The figure also shows the identified first-order and the correspond-
ing second-order wave histories. Note how the second-order wave component affects
the first-order peaks, amplifying the crests and moderating the troughs. Figure 2.5
shows the wave spectra for the measured history along with the first-order and the
second-order spectra. Note that the second-order energy is significantly smaller (even
at twice the peak spectral frequencies) than the first-order energy; it is the phase
locking of the first- and the second-order components (Fig. 2.4) that leads to larger

crests and flatter troughs.
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Figure 2.4: Wave history in wave tank: observed vs. identified first- and second-order
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Chapter 3

Conclusions and Recommendations

We applied second-order random wave models to investigate the nonlinearities in
measured waves (for both wave tank data and ocean field measurements). We found
that the second-order model predictions compared well with wave tank resulté and the
agreement was even better in the case of field measurements. We proposed convenient
ané,lytic formulations for skewness and kurtosis of waves from second-order theory as

a function of the wave environment parameters (H,, T,, d) characterizing the climate

conditions and the water depth at the site of interest. We also proposed simple

analytic crest height distributions based on these predicted moments and found these
predicted distributions to compare closely with the measured results. This analytic
distributions can also serve as a convenient alternative to simulating second-order

wave crests.

We developed a computer program to simulate second-order nonlinear waves.
Given a measured time history, this program can also identify the underlying first-
order wave componeﬁt which when run through the second-order predictor produces

a resultant time history that agrees with the measured history at every time point.
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This feature is especially useful in performing second-order response analysis using

measured waves where the input waves are assumed to be Gaussian.

In order to test the limitations of the second-order model, we suggest comparison of
model predicfions across more severe climate conditions. We found that while the field
results were well-predicted, the wave tank crest heights seemed to be underpredicted
by the second-order wave model. A more detailed investigation of the wave tank
data may help explain these results. Recall that the wave tank data compriéed of
2 hour measurements and a hypothesis is that these measurements are long enough
to be nonstationary. A way to confirm this hypothesis may be to investigate shorter
segments of the 2 hour histories and compare model predictions to measured statistics
from these smaller segments. As pointed earlier, scaling down of the waves in the tank

may also be a source of error, particularly so when generating waves in severe storms.

For the wave tank data, we found that the prediction of the marginal PDF of
the wave elevations was in closer agreement with the measured results than the wave
crest predictions. This may suggest that the discrepancy.in the wave elevation does
not explain the larger discrepancy in the wave crests. A discrepancy, if any, in the
comparisons of the upcrossing rates or the velocities of the second-order simulated
histories to the measured results may help explain the larger discrepancy in the crest

heights.

We found that the cubic Hermite model (using observed moments) slightly un-
derpredicts the crest heights in the two to three o, range even though it quite accu-
rately predicts the elevations for the wave tank data. Note that the Rayleigh crests
are transformed in this Hermite prediction and consequently assumes an underly-
ing narrow-band process. We could, instead, simulate corresponding Gaussian waves

from the measured spectrum in an attempt to reflect the measured bandwidth; and
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transform the Gaussian elevations at every time point using the cubic Hermite model
with moments of the measured history. A comparison of the crest distribution of
this transformed history with the observed crest results will indicate the impact of
bandwidth effects on the crest height distribution. Note here that we are attempting

to preserve both the observed moments and the observed bandwidths.
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CHAPTER 3. CONCLUSIONS AND RECOMMENDATIONS
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